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Abstract—Several techniques have been applied on leakage current
waveforms in order to extract information regarding electrical activ-
ity on high-voltage insulators. However, a fully representative value
is yet to be defined. In this article, a hybrid support vector fuzzy
inference system is introduced as a classification tool. The system
incorporates fuzzy logic, genetic algorithms, and support vector ma-
chines. Apart from the classification accuracy achieved, the system
also produces a set of fuzzy rules under which the classification is
made, allowing a further insight of the process. A comparison is made
to other classification tools previously applied on the same data set.

INTRODUCTION

The performance of insulators is a matter of great concern for
system operation. A single insulator failure, especially when
the insulator is located in a high-voltage (HV) station or sub-
station, can result to an excessive outage of the power system.
Several factors connected with local operation conditions af-
fect the insulators’ performance, with pollution being probably
the most significant one [1–3]. Several standardized tests are
employed in order to investigate insulators’ performance in
the lab, e.g., [4–6]. However, since insulators’ performance is
strongly correlated to environmental conditions, field testing
is also employed with a guide for the establishment of HV
insulator test stations having recently been published [7].

Leakage current measurements are commonly employed
to monitor and investigate the performance of insulators in
both lab and field [8]. The basic stages of activity have been
well correlated with certain waveform shapes during lab tests
[9–12]. An investigation of field waveforms recently showed
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that similar shapes are recorded and should be expected in the
field, along with waveforms rarely recorded in the lab [13–16].
Several techniques have been applied on leakage current wave-
forms in order to extract and record information connected to
surface activity. In the field, the most commonly extracted val-
ues are the peak value, the charge, and the number of pulses
exceeding pre-defined thresholds, whereas the harmonic con-
tent is commonly investigated in lab measurements [8]. How-
ever, it is commonly accepted that it is the shape of the leakage
current waveform that corresponds to the experienced electri-
cal activity, and a fully representative value of the waveforms’
shape is yet to be defined. Several signal analysis and classifi-
cation techniques have been applied on LC measurements with
different values considered as inputs and aiming to different
goals and a thorough review can be found in [8].

Recently, a new approach has been proposed for the classi-
fication of leakage current waveforms [13, 17, 18]. According
to this approach, 20 different features are extracted from the
leakage current waveform in order to be used for the classifica-
tion. The features selected are commonly used in the literature
[8] and equally represent the time and the frequency domain
(ten features from each domain). Classification techniques are
used to classify each waveform in two different classes de-
pending on the duration of discharges [13, 17, 18]. At first,
a linear classification was attempted employing a Euclidian
classifier and a simple genetic algorithms (GAs) approach,
and results were not that encouraging [17]; this was attributed
to the non-linearity of the problem and the absence of an effec-
tive feature selection scheme. Then, non-linear classification
techniques were employed, including three different classifi-
cation algorithms (k-nearest neighbors [knn], Naı̈ve Bayes,
support vector machines [SVMs]) and two feature extraction
techniques (student’s t-test and minimum redundancy maxi-
mum relevance [mRMR]) [13]. Results showed the superior
performance of SVMs and of the feature set provided by the
mRMR algorithm. Then, a new GAs approach was applied
[18] with GAs used for both feature selection and classifi-
cation and the accuracy percentage achieved was significantly
higher compared to the previous GA approach [17] and slightly
inferior to the SVM-mRMR approach [13].

Although the mRMR-SVM classification scheme offered
the best results, there were still some drawbacks. Specifically,
mRMR is a multivariate filtering feature selection technique
which could not incorporate the technical characteristics of
the classifier in its feature selection mechanism. Moreover,
SVM classifiers are highly non-linear classifiers and the ex-
tracted models can not be interpreted. For these reasons, in
the present article an evolutionary hybrid methodology is pro-
posed, which deploys a GA to optimize the following: the fea-
ture subset, which should be used as an input to the classifier,

the parameters of the SVM classifier, and the parameters of a
methodology which extracts interpretable fuzzy classification
rules directly from the extracted SVM model. The aim of the
study remains the classification of field waveforms portraying
discharges in two different classes depending on the duration
of discharges. A comparison with results from previous im-
plementations is shown and discussed. Besides the superior
classification achieved, the system outputs a set of fuzzy clas-
sification rules that offer, for the first time, an insight of the
classification process.

2. EXPERIMENTAL SETUP

The LC waveforms investigated in this article have been
recorded in two 150 kV substations of the transmission system
of Crete, in Greece during a period exceeding six years. The
Cretan Transmission Network is exposed to intense marine
pollution and several techniques have been employed by the
Greek Public Power Corporation (PPC) to cope with the prob-
lem [19–22], including the construction of a HV Test Station
in Iraklion, Crete [23–25].

The waveforms investigated in this article have been
recorded on 18 different 150-kV post insulators (porcelain,
RTV SIR coated, and composite) that were part of the grid [13,
14, 17, 18]. A collection ring was installed at the bottom side
of each monitored insulator and the current was driven through
a Hall current sensor. The acquired data was then transmitted
to a commercially available data acquisition system (DAQ).
Sampling was performed continuously and simultaneously for
all monitored insulators, at a rate of 2 kHz and resolution of
12 bit. Each waveform recorded has a duration of 480 ms. The
monitoring system incorporated the time-window technique
[15, 16] to record waveforms. The waveform portraying the
highest peak value in the considered time window is recorded.
A schematic representation of the measuring system is shown
in Figure 1. Detailed specifications of the DAQ, pictures, and
more information can be found in [13–18].

3. PROBLEM DESCRIPTION

The correlation of surface activity with the shape of leakage
current waveforms has been well established, especially in
case of lab tests [1–3, 8–12]. The basic discrete stages con-
sists of: sinusoid waveforms due to the presence of conductive
film on the insulator surface, distorted sinusoid waveforms as
an intermediate stage, and dry band discharges that causes
a time lag of current onset. Recent research showed that the
same basic waveforms’ shapes should also be expected in the
field [13]; however, the reality of field conditions results to an
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FIGURE 1. Schematic representation of the measuring sys-
tem.

increased complexity of field recordings [13–16]. Some of the
facts that should be considered is the presence of noise [15, 16],
spikes [13], sinusoids of amplitude similar or greater than that
of dischargers [13, 14], and also the complexity of discharge
portraying waveforms [13, 14].

The data set considered in this article consists of 387 dis-
charge portraying waveforms. The noise reduction/removal
techniques described in [15, 16] have been applied in order
to remove noise related waveforms, the SR ratio [13, 16] has
been used in order to remove isolated spikes and the D3/D5
ratio derived from wavelet analysis has been used to remove
sinusoids waveforms [13], in order to isolate only discharge
portraying waveforms. The waveforms have been classified in
two different classes, depending on the duration of discharges.
Class C1 includes waveforms that portray discharges that last
four half-cycles or less, whereas class C2 includes waveforms
that portray discharges that last five or more half-cycles. Some
examples are shown in Figure 2. The waveforms in Figures
2(a) and 2(b) illustrate clearly the grouping criterion: If a
waveform portrays discharges that last four or less consec-
utive half-cycles is identified as class C1 (Figure 2(a)), if the
waveform portrays a discharge that lasts five or more consec-
utive half-cycles, then it is identified as class C2 (Figure 2(b)).
However, such simple shapes are rather the exception and not
the rule. Waveforms recorded in the field, frequently portray a
complex shape, with two examples shown in Figures 2(c) and
2(d), whereas a greater selection of waveforms can be seen in
[8, 14, 25]. It should be noted that all waveforms shown in Fig-
ure 2 have been selected so as to be similar in shape and peak
value and yet belong to different classes, in order to underline
the need of advanced techniques for the classification.

Recorded data are converted to mat files, using custom
made software [26], and are then processed off line with the
use of MATLAB, a software used in various applications in
insulators’ research [27–30]. A set of 20 features are extracted
and used for the classification. The features can be seen in

FIGURE 2. Waveforms from the investigated dataset: (a)–(c) class C1 and (b)–(d) class C2.
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No. Feature (time domain) No.
Feature (frequency

domain)

1 Amplitude 11 Third to first
harmonic ratio:
K3/K1

2 Mean 12 Fifth to first harmonic
ratio: K5/K1

3 Median 13 Fifth to third
harmonic ratio:
K5/K3

4 Variance 14 Total harmonic
distortion ratio:
THD

5 Standard deviation (STD) 15 Harmonic distortion
ratio: HD

6 Median absolute deviation
(MAD)

16 STD MRA VECTOR
ratio: D1/D5

7 Skewness 17 STD MRA VECTOR
ratio: D2/D5

8 Kurtosis 18 STD MRA VECTOR
ratio: D3/D5

9 Interquartile range (IQR) 19 STD MRA VECTOR
ratio:D4/D5

10 Charge 20 Distortion ratio: DR

TABLE 1. Employed features

Table 1. Features 1–10 derived from the time domain, and
features 11–20 from the frequency domain, and have been
selected in order to evenly represent both domains and also
considering the literature [8].

Regarding the time domain features, frequently used val-
ues such as the amplitude and charge, along with commonly
used [8] statistical values are employed. Regarding the feature
domain features, it was considered that the content of odd har-
monics is commonly correlated to the occurrence of discharges
and the distortion of the waveforms’ shape and therefore sev-
eral commonly used ratios of odd harmonics [8, 12, 30] are
employed. It should be noted that the fundamental frequency is
50 Hz and that the harmonic distortion (HD) ratio is similar to
the total harmonic distortion (THD) ratio, with the numerator
being the sum of the odd harmonics’ content. Further, wavelet
analysis and especially multi resolution analysis (MRA) is em-
ployed in order to acquire the standard deviation (STD) MRA
VECTOR [13, 16, 31, 32]. The STD MRA VECTOR contains
the STD of the details of each level of the wavelet MRA of the
original waveform, with D1 referring to the first decomposition
level, D2 to the second level etc [13, 16]. The distortion ratio
[8] given by: DR = (D1 + D2 + D3 + D4)

/
D5, is also con-

sidered. The frequency bands of the STD MRA VECTOR’s
components are shown in Table 2.

Decomposition (A) Approximation (D) Details
level (Hz) (Hz)

1 0–500 500–1000
2 0–250 250–500
3 0–125 125–250
4 0–62.5 62.5–125
5 0–31.25 31.25–62.5
6 0–15.625 15.625–31.25

TABLE 2. Frequency bands of MRA

The same data set and features that have been used in pre-
vious implementations [13, 17, 18] are considered, so that
comparisons can be made.

4. HYBRID SUPPORT VECTOR FUZZY
INFERENCE SYSTEM

SVMs are considered as one of the most accurate machine
learning classifiers [33], with a variety of applications includ-
ing insulation evaluation (e.g., [34, 35]). The SVM algorithm
is a supervised learning method that addresses the problem
of linear and non-linear classification by finding the maxi-
mum margin hyperplane that best separates the classes. Non-
linear SVMs map the training samples from the input space
into a higher-dimensional feature space with the use of some
mapping function, also known as the kernel function. Sev-
eral kernel functions can be used and the radial base function
has been employed in this article as being the most commonly
used kernel function in non-linear classification problems. The
mapping procedure resembles the hidden neuron layer of neu-
ral networks. However, SVMs do not suffer from local minima
or overfitting, as neural networks do. They have the advan-
tage of automatically selecting their model size and provide
superior generalization ability by maximizing the margin of
separation.

The main disadvantage of SVM classifiers is their black box
nature, which does not allow user to extract interpretable infer-
ences from the final classification models. Moreover, SVMs’
performance deteriorates when non informative features are
used as inputs raising the problems’ dimensionality. Further-
more, the SVMs’ parameters should be tuned effectively. Grid
search and other heuristic approaches [36, 37] have been de-
veloped to solve this problem, however they are inefficient in
terms of computational cost and they do not search in parallel
for the optimal feature subset.

Fuzzy rules’ language is considered to be among the closest
computer languages to the natural human one. Thus, fuzzy
rules can easily be interpreted by domain experts to extract
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useful conclusions. Furthermore, fuzzy systems present the
ability to hide imprecise knowledge through fuzziness. This
property allows for the extraction of novel knowledge from the
initial row data. Furthermore, fuzzy systems can model non-
linear functions. Their drawbacks include low classification
performance, overfitting, and thus absence of generalization
properties.

Extracting fuzzy rules from trained SVM classification
models was a great challenge for the scientific community as
this could be a step toward interpreting the high classification
performance of SVMs and extracting useful domain informa-
tion from them. In the last decade many approaches have been
developed to accomplish this goal [38]. In the present article,
the methodology which was proposed in [39], and has been
successfully applied for other classification tasks [40, 41], is
used. This methodology uses the technique proposed in [42] to
describe the SVM classification model as a set of SVFI rules
which are proved to be equivalent to the initial classification
model.

The SVFI rules are in this form:

Rule k: if Pk
1 and Pk

2 and Pk
N then Ck,

where Pk
i , i = 1, . . . , N are fuzzy clauses, having the form

where xi is CloseToSV (k,i). These fuzzy clauses examine the
membership of the ith input value in the ith fuzzy set of the
kth support vector. The support vectors are the training sam-
ples that are selected by the SVM algorithm to define the
final classification hyperplane. The sets CloseToSV (k, i) are
the fuzzified numerical distance of xi in the xk

i component
of the k-th support vector. A Gaussian function of the form

μk
i (xi ) = exp(− 1

2 ( xk
i −xi

σk
)2) estimates the membership function

by quantifying the distance of the inputs component xi from
the value xk

i of the ith component of SVk . The parameters σK

are real constant numbers (σk ∈ R).
The SVFI rules are large in number and hard to interpret.

Thus, in [39] a methodology is proposed to derive a simpler
fuzzy system that approximates the accurate set of rules keep-
ing only the more important aspects of the data. This method-
ology not only reduces the extracted fuzzy rules but also re-
place CloseToSV (k, i) with linguistic clauses (low, medium,
high). The fuzzy sets low, medium, and high which are used
to linguistically represent the values of specific features have
Gaussian participation functions with centers which should
be either user-defined or algorithmically optimized. The per-
formance of this method is highly depending of the optimal
selection of its parameters β, δ and of the appropriate setting
of the linguistic sets. β is a threshold used for discarding a
fuzzy clause due to its membership value and δ is a threshold
for discarding a fuzzy clause due to its significance (the higher

its langrage multiplier the higher its significance). To the best
knowledge of the authors, no effective analytical method exists
thus far to locate optimal values for these parameters.

GAs are general optimization meta-heuristic algorithms
based on the initial creation of a population of candidate solu-
tions, called chromosomes, and their iterative differentiation
using the operators of evaluation, selection, crossover, and mu-
tation until some termination criteria are reached [43]. GAs
have been proved useful and efficient in optimization prob-
lems where the search space is big and complicated or there is
not any available mathematical analysis of the problem.

In the present article, GAs were used in the optimization of
a variety of variables. These variables include feature variables
to define if a feature should be used as input, the parameters
C and gamma of the RBF-SVM classifier, the parameters β,
δ and the centers of the linguistic clauses of the fuzzy rule
extraction methodology [39]. Specifically, the chromosome of
the proposed GA consists of 20 binary genes to determine
which features should be used as inputs for the classifier and
seven real-valued genes to optimize C, gamma, β, δ parameters
and the centers of the three fuzzy sets low, medium, and high
(Table 3). The feature selection genes take values 0 or 1 and
force the classifier to use a specific feature as input if the
feature value for this input is 1.

The crossover operator which was used was the one-point
crossover with a crossover probability of 90%. As for the muta-
tion operator (mutation probability: 10%), the binary mutation
operator was applied for the feature genes and the Gaussian
mutation operator is applied for the other genes because they
are real valued genes. The binary mutation randomly alters a
gene value from 0 to 1 and opposite. The Gaussian mutation
operator adds a random number in a randomly selected gene.
This random number is taken from the Gaussian distribution
using as center the zero value and as width the interval of
allowed values for this gene divided by 10.

Position in Allowed
Gene chromosome values

Feature genes 1–20 0 or 1
Regularization parameter C 21 [0–1024]
RBF parameter gamma 22 [0–1024]
Threshold β 23 [0–1]
Threshold δ 24 [0–1]
Center of fuzzy set low 25 [0–1]
Center of fuzzy set medium 26 [0–1]
Center of fuzzy set high 27 [0–1]

TABLE 3. Chromosomes representation
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Classification Euclidian GA classification GA feature selection SVM classification and Hybrid support vector
technique [16] [16] and classification [17] mRMR feature selection [12] fuzzy inference system

Best accuracy 77.20% 56.12% 88.48% 90.21% 94.36%
Number of features 20 20 11 10 9

TABLE 4. Best results for different classification techniques

The fitness function which was used to measure the perfor-
mance of each individual is shown in Eq. (1):

Fitness = Accuracy SVM

+ 0.5•Accuracy Interpretable Rules

+ 0.1•
(

1 − #Interpretable Rules

#Initial SV Rules

)

− 0.01 • (#Selected Features). (1)

The multipliers on the terms of the fitness function are
selected to state the importance that is given in each different
goal. Thus, the most important goal is the accuracy of the
SVM classifier, with the accuracy of the interpretable rules,
the complexity of the fuzzy rules, and the number of selected
features being the other goals from the most important to the
least significant one.

The population of the proposed evolutionary algorithm was
set to 100 after thorough experimentation using the training set.
The termination criteria of the algorithm were a combination of
the maximum number of generations (1000) to be reached and
a convergence criterion. The convergence criterion is satisfied
when the fitness of the best solution found so far is less than
5% away from the mean fitness of the population in a specific
iteration of the algorithm.

5. RESULTS AND DISCUSSION

5.1. Overall Results and Comparison

Ten runs were conducted. In each run, 40% of the data was
used as the training set, 10% as the evaluation set (selecting
optimal values for C and gamma parameters using grid search)
and 50% as the test set. The mean identification success rate
(percentage) for the 10 runs is 91.19%, the mean geometric
mean is 90.90%, and the average number of features used is
9.2. The best accuracy achieved in a single run was 94.36%
with a geometric mean of 94.33% and nine features used. A

comparative table of the best classification accuracy achieved
and the number of features used with previously applied tech-
niques for the same data set is shown in Table 4. It is shown
that the hybrid SVFI system achieves the best accuracy per-
centage and also that it uses the less features compared to the
other techniques.

5.2. Overall Feature Selection

The stochastic nature of the proposed methodology provided
a variety of final solutions which use different feature subsets
as inputs. This fact was expected as many of the examined
features are highly dependent and share mutual information.
The percentages of selection for every feature are shown in
Table 5. Despite the stochastic nature of the proposed method-
ology, some of the features are selected in most executions
while others are rarely selected, which indicates the robustness
of the proposed methodology and the importance of some spe-
cific features in the classification model. The frequent use of
the odd harmonics ratios is in agreement with the commonly
accepted relationship of their content with surface activity [8,
10, 12, 44–52]. The third to first harmonic ratio is the most
frequently selected feature which should be expected since
it has been well correlated with the presence of discharges
[8–12, 44–52]. It should be noted that the odd harmonic ratios
derived from Fourier analysis are more frequently considered
compared to the wavelet STD MRA VECTOR components,
which provide a ratio of frequency band contents, and that the
THD, HD, and DR have a relatively low selection percentage.
This was to be expected since such ratios give a “wider” view
of the picture and although they may be preferred if a single
indication is required, they were bound to be left out when
fuzzy sets are employed in favor of more precise features as
the harmonic ratios.

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Selection percentage for
every feature (%)

60 30 30 50 50 50 30 40 50 50 90 70 80 40 10 20 10 50 60 50

TABLE 5. Percentages of selection for every feature
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Result Aggregated
Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (class) strength

Rule 0 L L L L L L L C1 1.017
Rule 1 L H L L H L C1 0.308
Rule 2 L L L L L L L C2 0.567
Rule 3 L L L L L L C1 0.321
Rule 4 L H L L L L L C1 0.522
Rule 5 L L L L L C1 0.864
Rule 6 L L L L L L C2 0.873
Rule 7 L L L L C2 0.429
Rule 8 L L L L L C2 0.799
Rule 9 L L L L H L C2 0.589
Rule 10 L L L L H L L C2 0.305

TABLE 6. Rules for best run (accuracy 94.36%)

5.3. Best Run

The fuzzy rules for the best run are shown in Table 6. The
features used hint some interesting results. First of all, the
amplitude is not considered in any rule which is an added in-
dication of the peak value being misleading in regard to the
waveform shape [13]. Instead, more robust features resilient
to data set outliers such as the interquartile range (IQR), the
median absolute deviation (MAD), and the charge are consid-
ered in almost every rule. The fifth to third harmonic ratio is
considered in every rule. This may hint to the importance of
this ratio, which has also been correlated to ageing [52], but
the fact that it always has the same value shows that it prob-
ably plays a minor role in this classification. A closer look to
Rules 0 and 10 hints that the third to first ratio has a more
decisive impact, as a change in its value results to a change
in the classifier’s output, with all other features remaining the
same. Further, the frequent use of the harmonic content ratios
instead of the STD MRA VECTOR ratios and the THD, HD,
and DR ratios underlines the above said about such features in
fuzzy classification.

6. CONCLUSION

Leakage current monitoring is a commonly employed tool for
the investigation of insulators’ performance. Several values
may be used as an indication of electrical activity, but it is ac-
tually the shape of leakage current waveforms that is correlated
to the experienced electrical phenomena. However, automating
the classification of waveforms’ shapes can be a rather complex
task, especially in the case of field waveforms. In this article, a
hybrid SVFI system is employed for the classification of leak-
age current waveforms portraying discharges. A number of
387 waveforms recorded on live HV post insulators installed
in 150 kV substations is used as a data set. Twenty different fea-

tures are extracted from each waveform, ten from the time and
ten from the frequency domain. The waveforms are classified
in two classes based on the duration of discharges. The hybrid
system employed uses GAs and SVMs and provides a set of
fuzzy logic rules for the classification, offering an insight to the
process. Results for overall classification and the run achiev-
ing the highest accuracy percentage are shown. Comparisons
are made with other classification schemes previously applied
on the same data and feature set. Overall feature selection and
the feature set and fuzzy rules providing the best accuracy are
further investigated. Results show that the considered hybrid
system offers the best classification (reaches 94.36%) accu-
racy compared to previous classification schemes, while using
less features, and that it is also able to offer an insight to the
classification process.
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