Reference-guided de novo assembly: improved genome of a non-model plant species

URPP Evolution in Action

Heidi E.L. Lischer^{1,2,3}, Damianos Melidis², Masaomi Hatakeyama^{2,4}, Kentaro Shimizu^{1,2}

University of

¹URPP Evolution in Action; ²Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Switzerland; ³Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; ⁴Functional Genomics Center Zurich, ETH Zurich, Switzerland

Swiss Institute of **Bioinformatics**

Problem

- De novo assembly of genomes is still challenging:
 - Short read length 0
 - Repetitive regions
 - Uneven coverage, even missing data
 - Polymorphisms and sequencing errors
 - High computational resources required

Solution

Conclusions

- Reference-guided de novo assembly approach
- Reduces K-mer problem 0
- Less memory resources required, but longer runtime 0
- Improved genome assembly, especially in genic regions 0
- \rightarrow The closer related the reference genome the better result is expected
- Idba:
 - Best genome assembly results, but requires 2-3 times more memory 0
- Reference-guided assembly approach: use an available reference sequence from a close relative to improve genome assembly (adapted and extended from Schneeberger *et al.* 2011¹)
- resources compared to reference-guided approach with ALLPATHS-LG
- Arabidopsis halleri:
 - Improved genome with reference-guided de novo assembly approach 0
 - Idba de novo assembly leads to less good results in real data set 0

Methods

Reference-guided de novo assembly pipeline:

Evaluation:

- Target genome: Simulate reads from Arabidopsis lyrata (204 Mb)
 - 1% heterozygosity 0
 - 330 million paired-end reads (150, 200, 500 bp insertion length) 0
 - 610 million mate-pair reads (3, 5, 7, 11, 15 kb insertion length) 0
- Reference genome: *Arabidopsis thaliana* (120 Mb)
 - >80 % overall sequence identity with A. lyrata, but >50% missing ²

Application to real data set - Arabidopsis halleri

• Important model species to study environmental adaptation and polyploid speciation

- information of a related genome

Approach	number scaffolds	N50 [bp]	Total size [mb]	Max [kb]	Reads mapped	Proper paired
A. halleri (JGI v1)	11,241	29,271	128	644		
De novo – Abyss	16,251	41,736	182	301	80.7 %	90.2 %
De novo – ALLPATHS-LG	2,289	885,958	213	3,038	76.2 %	91.2 %
De novo –idba	20,509	33,072	151	574	94.0 %	85.6 %
Ref-guided ALLPATHS-LG	12,549	83,639	206	751	76.2 %	86.3 %

- *A. lyrata* genome available, but A. halleri is missing
- A. lyrata (LL) A. halleri (HH) A. kamchatica (LLHH)

• Resources:

- 300 million paired-end reads (150, 300, 750 bp insertion length) 0
- 850 million mate-pair reads (3, 5, 7, 11, 15, 22 kb insertion length) 0
- Reference genome: Arabidopsis lyrata 0

- Reference-guided de novo assembly strategy increases N50 and decreases number of scaffolds
- Improved genome will facilitate the study of polyploid speciation \rightarrow

References

¹ Schneeberger K, et al. 2011. Reference-guided assembly of four diverse Arabidopsis thaliana genomes. PNAS 108: 10249-10254 ² Hu TT, et al. 2011. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. NatGenet 43: 476-481 ³ Salzberg SL, et al. 2012. GAGE: A critical evaluation of genome assemblies and assembly algorithms. GenomeRes 22: 557-567 ⁴ Bradnam KR, et al. 2013. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience: 2: 10

